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Abstract 
This paper studies the Hamiltonian coloring and Hamiltonian chromatic number for different graphs .the main 

results are1.For any integer n greater than or equal to three, Hamiltonian chromatic number of Cn is equal to n-2.  

2. G is a graph obtained by adding a pendant edge to Hamiltonian graph H, and then Hamiltonian chromatic 

number of G is equal to n-1. 3. For every connected graph G of order n greater than or equal to 2, Hamiltonian 

chromatic number of G is not more than one increment of square of (n-2).  
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I. Introduction 
Generally in a (d – 1) radio coloring of a 

connected graph G of diameter d, the colors assigned 

to adjacent vertices must differ by at least d-1, the 

colors assigned to two vertices whose distance is 2 

must differ by at least d-2, and so on up to antipodal 

vertices, whose colors are permitted to be the same. 

For this reason, (d-1) radio colorings are also referred 

to as antipodal colorings. 

In the case of an antipodal coloring of the path Pn 

of order n > 2, only the two end-vertices are 

permitted to be colored the same. If u and v are 

distinct vertices of Pn and d (u, v) = i, then |c (u)-c 

(v)| > n – 1 – i. Since Pn is a tree, not only is i the 

length of a shortest u – u path in Pn, it is the length of 

the only u – v path in Pn. In particular, is the length of 

a longest u – v path?  

The detour distance D (u, v) between two 

vertices u and v in a connected graph G is defined as 

the length of a longest u – v path in G. Hence the 

length of a longest u – v path in Pn is D (u, v) = d (u, 

v). Therefore, in the case of the path Pn, an antipodal 

coloring of Pn can also be defined as a vertex coloring 

c that satisfies. 

D (u,v) + |c(v)| > n – 1, for every two distinct 

vertices u and v of Pn. 

 

§1.1 Definition: Vertex coloring c that satisfy were 

extended from paths of order n to arbitrary connected 

graphs of order n by Gary Chartrand, Ladislav 

Nebesky, and Ping Zhang .A Hamiltonian coloring 

of a connected graph G of order n is a vertex coloring 

c such that, D (u,v) + |c(v)| > n – 1, for every tow 

distinct vertices u and v of G. the largest color 

assigned to a vertex of G by c is called the value of c 

and is denoted by hc(c). The Hamiltonian 

chromatic number hc (G) is the smallest value 

among all Hamiltonian colorings of G. 

EX: Figure.1 (a) shows a graph H of order 5. A 

vertex coloring c of H is shown in Figure.1 (b). Since 

D (u, v) + |c (u) - c (v)| > 4 for every two distinct 

vertices u and u of H, it follows that c is a 

Hamiltonian coloring and so hc(c) =4. Hence hc (H) 

> 4. Because no two of the vertices t, w, x, and y are 

connected by a Hamiltonian path, these must be 

assigned distinct colors and so hc (H) > 4. Thus hc 

(H) = 4. 

 
1. A graph with Hamiltonian chromatic number 4 

 

If a connected graph G of order n has 

Hamiltonian chromatic number 1, then D(u,v) = n – 1 

for every two distinct vertices u and v of G and 

consequently G is Hamiltonian-connected, that is, 

every two vertices of G are connected by a 
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Hamiltonian pat. Indeed, hc (G) = 1 if and only if G 

is Hamiltonian – connected. Therefore, the 

Hamiltonian Chromatic Number of a connected 

graph G can be considered as a measure of how close 

G is to being Hamiltonian connected. That is the 

closer hc (G) is to 1, the closer G is to being 

Hamiltonian connected. The three graphs H1, H2 and 

H3 shown in below figure 2 are all close (in this 

sense) to being Hamiltonian-connected since hc (Hi) 

= 2 for i = 1, 2, 3. 

 
                                  H1                                H2                                            

H3 

2. Three graphs with Hamiltonian chromatic number 

2 

 

II. Theorem:  For every integer n > 3, hc 

(K1,n-1) = (n-2)
2
 + 1 

Proof: Since hc (K 1, 2) = 2 (See H1 in Figure 2) we 

may assume that n ≥ 4.  

Let G = K 1,n-1 where V(G) = {v1,v2…..vn} and vn is 

the central vertex. Define the coloring c of G by c 

(vn) = 1 and C (vi ) = (n-1) + (i-1)(n-3) for 1 ≤ i ≤ n -

1.Then c is a Hamiltonian coloring of G and  

hc (G) ≤ hc (c) = c (vn-1) = (n-1) + (n-2) (n-3) = (n-2)
2 

+ 1.It remains to show that hc (G) ≥ (n-2)
2 
+ 1. 

Let c be a Hamiltonian coloring of G such that hc(c) 

= hc (G). Because G contains no Hamiltonian path, c 

assigns distinct colors to the vertices of G. We may 

assume that C (v1) < c (v2) < … < c (vn-1). We now 

consider three cases, depending on the color assigned 

to the central vertex vn. 

 

Case 1.  

c (vn) = 1.  

Since    

D (v1, vn) = 1 and D (vi, vi+1) = 2 for 1 ≤ i ≤ n-2. 

It follows that 

C (vn-1) ≥ 1 + (n-2) + (n-2) (n-3) = (n-2)
2 
+ 1  

And so     

hc (G) = hc(c) = c (vn-1) ≥ (n-2)
2
 + 1. 

 

Case 2.  

C (vn) = hc(c) 

 Thus, in this case,  

1 = c (v1) < c (v2) < … < c (vn-1) < c (vn) 

Hence  

C (vn) ≥ 1 + (n-2)(n-3) + (n-2) = (n-2)
2 
+ 1 

And so  

hc (G) = hc (v) = c(vn) ≥ (n-2)
2 
+1. 

 

Case 3.  
C (vj) < c (vn) < c (vj+1) for some integer j with 1 ≤ j ≤ 

n – 2.  

Thus c(v1) = 1 and c(vn-1) = hc(c).  

in this case  

C (Vj) ≥ 1 + (j-1) (n-3), 

C (vn) ≥ c (vj) + (n-2) 

C (vj+1) ≥ c (vn) + (n-2) and 

C (vn-1) ≥ c (vj+1) + [(n-1) – (j+1)] (n-3). 

Therefore, 

C (vn-1) ≥ 1 + (j-1)(n-3) + 2(n-2) + (n-j-2)(n-3) 

 = (2n-3) + (n-3)
2 
= (n-2)

2 
+ 2 > (n-2)

2 
+ 1. 

And so    hc (G) = hc(c) = c (vn-1) > (n-2)
2 +

 1. 

Hence in any case, 

hc (G) ≥ (n-2)
2   

+ 1 and so hc (G) = (n-2)
2     

+ 1. 

 

III. Theorem: For every integer n > 3, hc 

(Cn) = n-2. 
Proof.  

Since we noted that hc (Cn) = n-2 for n = 3, 4, 5. 

We may assume that n ≥ 6. Let  Cn = (v1, v2…vn , v1). 

Because  the vertex coloring  c  of  Cn defined by        

c (v1) = c(v2) = 1, c(vn-1) = c(vn) = n-2 and c(vi) = i-1 

for 3≤i≤n-2 is a Hamiltonian coloring, it follows that 

hc(Cn) ≤ n-2.Assume, to the contrary , that hc (Cn) < 

n-2 for some integer n ≥ 6. Then there exists a 

Hamiltonian (n-3) coloring c of Cn. We consider two 

cases, according to whether n is odd or n is even. 

 

Case 1.  

n is odd: Then n = 2k + 1 for some integer k ≥ 3. 

Hence there exists a Hamiltonian (2k-2) coloring c of 

Cn. Let, 

A = {1, 2… k-1} and B = {k, k+1…2k-2} 

For every vertex u of Cn, there are two vertices v of 

Cn such that D (u,v) is minimum (and d(u,v) is 

maximum), namely D(u,v) = d(u,v) + 1 = k+1. For u 

= vi, these two vertices v are vi+k and vi+k+1 (where the 

addition in i + k and i + k + 1 is performed modulo 

n).Since c is a Hamiltonian coloring.  

D (u, v) + |c (u) – c (v)| > n =l =2k.BecauseD (u, v) = 

k + 1, it follows that  

|c(u) – c(v)| > k – 1.  

Therefore, if c (u)  A, then the colors of these two 

vertices v with this property must belong to B. In 

particular, if c (vi)  A, then (vi+k)  B. Suppose that 

there are a vertices of Cn whose colors belong to A 

and b vertices of Cn whose colors belong to B. Then 

b>a However, if c (vi)  B, then c (vi+k) belongs to a 

implying that        a > b and so. a=b. since a + b = n 

and n is odd, this is impossible. 

 

Case 2.  

n is even: Then n = 2k for some integer k > 3. Hence 

there exists a Hamiltonian (2k-3) - coloring c of Cn.  

For every vertex u of Cn, there is a unique vertex v of 

Cn for which D (u, v) is minimum (and d (u, v) is 

maximum), namely,     d (u, v) = k. For u = vi, this 
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vertex v is vi+k (where the addition in i + k is 

performed modulo n). 

 

Since c is a Hamiltonian coloring, D (u,v) + |c(u) – 

c(v)| > n – 1 = 2k – 1. Because D (u, v) = k, it follows 

that |c (u) – c (v)| > k – 1. This implies, however, that 

if     

c (u) = k-1, then there is no color that can be assigned 

to u to satisfy this requirement. Hence no vertex of Cn 

can be assigned the color k- 1 by c.  

Let, A = {1, 2… k-2} and B = {k, k+1…2k-3}. 

Thus        |A| = |B| = k – 2. If c (vi)  A, then c 

(vi+k)  B. Also, if c (vi)  B, then c (vi+k) A. Hence 

there are k vertices of Cn assigned colors from 

B.Consider two adjacent vertices of Cn, one of which 

is assigned a color from A and the other is assigned a 

color from B. We may assume that c (v1)  A and c 

(v2)  B. Then c (vk+1)  B. Since D (v2,vk+1) = k+1, 

it follows that |c (v2) – c(vk+1) > k – 2. Because c (v2), 

c (vk+1)  B, this implies that one of c (v2) and c 

(vk+1) is at least 2k-2. This is a contradiction.  

 

§ 3.1Proposition: If H is a spanning connected sub 

graph of a graph G, then hc (G) < hc (H) 

Proof.  
Suppose that the order of H is n. Let c be a 

Hamiltonian coloring of H such that hc(c) hc (H). 

Then  DH (u,v) + |c(u) – c(v)| > n -1 for every two 

distinct vertices u and v of H. since DG (u,v) > DH 

(u,v) for every two distinct vertices u and v of H, it 

follows that DG (u,v)  + |c(u) – c(v)| > n – 1 and so c 

is a Hamiltonian coloring of G as well. Hence hc (G) 

< hc (c) = hc (H). 

 

§ 3.2 Proposition: Let H be a Hamiltonian graph 

of order n – 1 > 3. If G is a graph obtained by 

adding a pendant edge to H, then he (G) = n – 1. 

Proof. Suppose that C = (v1,v2…vn-1,v1) is a 

Hamiltonian cycle of H and v1vn is the pendant edge 

of G. Let c be a Hamiltonian coloring of G. Since DG 

(u, v) < n-2 for every two distinct vertices u and v of 

C, no two vertices of C can be assigned the same 

color by c. Consequently, hc (c) > n – 1 and so hc (G) 

> n – 1. 

Now define a coloring c` of G by 

 

C
1
 (vi) = 

 
  

 

 

We claim that c` is a Hamiltonian coloring of G. First 

let vj and vk be two vertices of C where 1 < j < k < n 

– 1. The |c
1
+ (vj) – c

1
 (vk)| = k – j and  

D (vj,vk) = max {k-j, (n-1) – (k-j)}. 

In either case, D (vj,vk) ≥ n-1 + j – k and so 

 D (vj,vk) + |c
1
 (vj) – c

1 
(vk) | ≥ n-1. 

For 1≤ j ≤n-1, |c
1
 (vj) – c

1
)vn)| = n-1-j, while 

D (vj,vn) ≥ max {j, n-j+1} 

And so, D (vj, vn) ≥ j.  

Therefore, 

D (vj, vn) + |c
1
 (vj) – c

1
 (vn)| ≥ n-1. 

Hence, as claimed, c’ is a Hamiltonian coloring of G 

and so hc (G) ≤ hc (c’) =c
1 
(vn) = n-1. 

 

IV. Theorem: for every connected graph 

G of order n ≥ 2, hc (G) ≤ (n-2)
2 
+ 1. 

Proof. First, if G contains a vertex of degree n-1, 

then G contains the star K1,n-1 as a spanning sub 

graph. Since hc (K1,n-1) = (n-2)
2
 + 1 it follows by 

proposition 1 that hc(G) ≤ (n-2)
2
 + 1. Hence we may 

assume that G contains a spanning tree T that is not a 

star and so its complement T contains a Hamiltonian 

path P = (v1,v2….vn). Thus vi vi+1   E (T) for 1 ≤ i≤ 

n-1 and so DT (vi,vi+I) ≥2. Define a vertex coloring c 

of T by  

C (vi) = (n-2) + (i-2) (n-3) for 1 ≤ i≤ n. 

Hence 

hc (c) = c (vn) = (n-2) + (n-2) (n-3) = (n-2)
2 
 

Therefore, for integers i and j with 1 ≤ i< j ≤ n, 

 

|c (vi) – c (vj)| = (j-i) (n-3). 

   If j = i+ 1, then 

 

D (vi,vj) + (c (vi) – c (vj)| ≥ 1 + 2(n-3) = 2n-5 ≥ n-1. 

Thus c is a Hamiltonian coloring of T. therefore,  

 

hc (G) ≤ hc (T) ≤ hc(c) = c (vn) = (n-2)
2 
< (n-2)

2 
+ 1, 

Which completes the proof 
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